Intrinsic disorder drives N-terminal ubiquitination by Ube2w
نویسندگان
چکیده
Ubiquitination of the αN-terminus of protein substrates has been reported sporadically since the early 1980s. However, the identity of an enzyme responsible for this unique ubiquitin (Ub) modification has only recently been elucidated. We show the Ub-conjugating enzyme (E2) Ube2w uses a unique mechanism to facilitate the specific ubiquitination of the α-amino group of its substrates that involves recognition of backbone atoms of intrinsically disordered N termini. We present the NMR-based solution ensemble of full-length Ube2w that reveals a structural architecture unlike that of any other E2 in which its C terminus is partly disordered and flexible to accommodate variable substrate N termini. Flexibility of the substrate is critical for recognition by Ube2w, and either point mutations in or the removal of the flexible C terminus of Ube2w inhibits substrate binding and modification. Mechanistic insights reported here provide guiding principles for future efforts to define the N-terminal ubiquitome in cells.
منابع مشابه
Ubiquitin C-terminal hydrolases cleave isopeptide- and peptide-linked ubiquitin from structured proteins but do not edit ubiquitin homopolymers
Modification of proteins with ubiquitin (Ub) occurs through a variety of topologically distinct Ub linkages, including Ube2W-mediated monoubiquitylation of N-terminal alpha amines to generate peptide-linked linear mono-Ub fusions. Protein ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs), many of which show striking preference for particular Ub linkage types. Here,...
متن کاملUbe2W conjugates ubiquitin to α-amino groups of protein N-termini
The covalent attachment of the protein ubiquitin to intracellular proteins by a process known as ubiquitylation regulates almost all major cellular systems, predominantly by regulating protein turnover. Ubiquitylation requires the co-ordinated action of three enzymes termed E1, E2 and E3, and typically results in the formation of an isopeptide bond between the C-terminal carboxy group of ubiqui...
متن کاملTRIM5α requires Ube2W to anchor Lys63-linked ubiquitin chains and restrict reverse transcription
TRIM5α is an antiviral, cytoplasmic, E3 ubiquitin (Ub) ligase that assembles on incoming retroviral capsids and induces their premature dissociation. It inhibits reverse transcription of the viral genome and can also synthesize unanchored polyubiquitin (polyUb) chains to stimulate innate immune responses. Here, we show that TRIM5α employs the E2 Ub-conjugating enzyme Ube2W to anchor the Lys63-l...
متن کاملTRIM5a requires Ube2W to anchor Lys63-linked ubiquitin chains and restrict reverse transcription
TRIM5a is an antiviral, cytoplasmic, E3 ubiquitin (Ub) ligase that assembles on incoming retroviral capsids and induces their premature dissociation. It inhibits reverse transcription of the viral genome and can also synthesize unanchored polyubiquitin (polyUb) chains to stimulate innate immune responses. Here, we show that TRIM5a employs the E2 Ub-conjugating enzyme Ube2W to anchor the Lys63-l...
متن کاملBiochemical and structural characterization of a novel ubiquitin-conjugating enzyme E2 from Agrocybe aegeria reveals Ube2w family-specific properties
Ubiquitination is a post-translational modification that is involved in myriad cellar regulation and disease pathways. The ubiquitin-conjugating enzyme (E2) is an important player in the ubiquitin transfer pathway. Although many E2 structures are available, not all E2 families have known structures, and three-dimensional structures from fungal organisms other than yeast are lacking. We report h...
متن کامل